
Multi-Agent Research Report

Research Report

Query:

Technical Decisions & Trade-offs - Multi-Agent Research System

Generated: 2026-01-31 18:15

Technical Decisions & Trade-offs

Multi-Agent Research System

Documentation of architectural choices, trade-offs, and implementation decisions

1. Agent Provider Selection

Decision: OpenAI GPT-4 over Google Gemini

Context: The system was initially designed with three AI providers: Perplexity (search), Claude (analysis), and Gemini

(validation/multimodal).

Change: Replaced Gemini with OpenAI GPT-4.

Reasoning:
 - Gemini's billing model was complex and unpredictable

 - OpenAI offers clearer pricing and usage tracking

 - GPT-4 provides comparable multimodal capabilities

 - Better API stability and documentation

Trade-offs:
 - Gemini: 1M token context window vs OpenAI: 128K token context

 - Gemini: Native video analysis vs OpenAI: Frame-based video analysis

 - Gemini: Complex billing vs OpenAI: Predictable per-token pricing

Implementation: Created src/agents/openai.py mirroring the Gemini agent interface, updated configuration to

use OPENAIAPIKEY, and modified the UI to reflect the new agent.

2. Homepage Architecture

Decision: Serve UI at Root Path

Context: Originally, the root path (/) returned JSON API information, while the UI was at /ui.

Page 1

Multi-Agent Research Report

Change: Root path now serves the graphical research interface; API info moved to /api/info.

Reasoning:
 - Users expect a web application at the root URL

 - Reduces friction for first-time visitors

 - API consumers can still access system info programmatically

 - Follows convention of modern web applications

Backward Compatibility: The /ui endpoint remains functional for any existing bookmarks or links.

3. Document Export Implementation

Decision: fpdf2 + python-docx for Export

Context: Users requested ability to download research results as PDF and DOCX.

Alternatives Considered:
 - WeasyPrint - HTML/CSS to PDF (rejected: heavy system dependencies)

 - ReportLab - Low-level PDF generation (rejected: verbose API)

 - fpdf2 - Lightweight pure-Python PDF (selected)

 - pandoc - Universal converter (rejected: external binary dependency)

Selected Stack:
 - PDF: fpdf2 - Pure Python, no system dependencies, simple API

 - DOCX: python-docx - Standard library for Word documents

Implementation Details:
 - Markdown converted to plain text for PDF (preserves structure)

 - Markdown parsed and converted to DOCX styles (headings, lists, etc.)

 - Metadata (query, sources, duration) included in both formats

 - Files generated on-demand, not stored server-side

4. A2A Protocol Implementation

Decision: Custom A2A Protocol Layer

Context: Needed standardized communication between heterogeneous AI agents.

Design Choices:
 - JSON-RPC 2.0 as the message format

 - Agent Cards for capability discovery

Page 2

Multi-Agent Research Report

 - Skill-based routing for task distribution

 - Async/await throughout for non-blocking operations

5. Streaming Architecture

Decision: Server-Sent Events (SSE)

Alternatives Considered:
 - WebSockets - Bidirectional (rejected: overkill for one-way updates)

 - Long Polling - Simple but inefficient (rejected)

 - SSE - Native browser support, HTTP-based (selected)

Reasoning:
 - Research progress is unidirectional (server to client)

 - SSE works over standard HTTP (firewall-friendly)

 - Automatic reconnection built into browsers

 - Simpler than WebSocket for this use case

6. Configuration Management

Decision: Environment Variables + Admin Panel

Architecture:
 - API keys stored in .env file (not committed)

 - Runtime settings in data/settings.json

 - Admin panel for non-sensitive configuration

Security Considerations:
 - API keys never exposed to frontend

 - Admin panel requires authentication

 - Settings file has restricted permissions

7. Error Handling & Fallbacks

Decision: Graceful Degradation with Ollama Fallback

Strategy:
 - Each agent initializes independently

 - Failed agents don't prevent system startup

Page 3

Multi-Agent Research Report

 - Ollama provides local fallback when cloud APIs fail

 - Provider priorities configurable per skill

8. Frontend Architecture

Decision: Vanilla JavaScript (No Framework)

Reasoning:
 - Single-page application with limited complexity

 - No build step required

 - Faster initial load

 - Easier deployment

 - Demonstrates core web fundamentals

Libraries Used:
 - marked.js - Markdown rendering (CDN)

 - Native fetch API for HTTP requests

 - Native EventSource for SSE

Summary of Key Decisions

 - AI Provider: OpenAI over Gemini (Billing clarity)

 - Homepage: UI at root (User experience)

 - PDF Export: fpdf2 (No dependencies)

 - Protocol: A2A/JSON-RPC (Agent interoperability)

 - Streaming: SSE (Simplicity)

 - Frontend: Vanilla JS (No build step)

 - Fallback: Ollama (Offline capability)

Document Version: 1.0 | Last Updated: January 2026

Page 4

